
Architecture

Given the collected requirements specified in the above section, we have generated a High-level class diagram
fulfilling these. A gameplay flow diagram outlining the general flow of the game and highlighting key features
contained within the program, which will be implemented in a Java-based library LibGDX.

These models were constructed in StarUML and the online diagram drawing tool Draw.io.

Game flowchart

To help with the design of the game and, in turn, it’s architecture, a flowchart was constructed to show
abstractly the basic functions of the game. It clearly shows various actions that the player can take,
depending on the area of the game they are playing in. We found it useful when constructing the
UML diagram, as it shows visually how different classes will perform together, showing how they
relate in a more physical practical sense.
As the flowchart is abstract, it ignores certain elements that will be present in the actual game, such
as menus, types of enemies and characters, and specific items and key presses. Instead, it just
represents the general way the game will be played.
We decided to use a flowchart, as they are simple, quick, and easy to understand. Through a few
pass throughs, one can easily see how the game will function while in play. We used draw.io, a free,
web hosted piece of software, to create it. It is not the most professional tool possible, however it was
simple and easy to use, fast, and required no software installation, so it was perfect for what we
needed it for. It also allowed us to export the file as a JPEG, making it easier to document.

UML Diagram

When creating the architecture of the game, a UML (Unified Modelling Language) diagram was used to help
with the design, we selected the UML program StarUML. This program allows the user to draw out their UML
diagram in a user-friendly graphical environment. What makes it good is that it is convenient for the user to
access the tools more easily to edit and assemble a representation of their project, with no programming
needed it can be all be generated graphically. Most of the program requires little keyboard input, it is only
needed to type out names and labels of things, so it mostly uses the mouse. The program comes with all of the
necessary tools and mechanisms to create a fully fleshed out in-depth blueprint of your system. Some other
reasons we chose StarUML is that it has the capability for asynchronous model validation, so it checks through
the model for any mishaps in it. The software has support for code generation and model-driven development.
Finally, the program is widely used throughout versus companies in industry these include Apple, IBM and EA
(Electronic Arts) to name a few. You can see that it has a large variety of good aspects which make it a strong
contender for our project.

For the construction of our UML diagram, we methodically went through the requirements, with a fair amount
of consideration between us we devised a diagram to fit the proposal. First, we omitted functionality and
connections between classes making everything a class from the requirements. By adding essential attributes
to each class, we could see potential connections/similarities among the collection of classes. For example, the
effects class was an assortment of individual classes which we saw to combined into one. In addition, we
removed some associations which would have crossed the diagram to stop it from looking messy, but we tried

to keep most of the most important ones left in. Furthermore, to help us in the future we decided to keep all
classes, functions and attributes all public so that we are not restricted when it comes to the actual
programming construction of the software.

The table below will go into details about different parts of the UML diagram.

Entity This class is to manage any humanoid-like being
within the game holding some shared attributes that
each of these entities e.g. Name and Health. It also
has the functionality to make new entities which are
its children classes. Its children classes include
Character, Zombie, ShopKeeper, Dog and Survivor.
This parent class was made to minimise the amount
of duplication of attributes between classes to stop
any confusion or conflicts and any unnecessary code
to implement the game.

Character This is used to manage the player by inheriting
attributes from the Entity class, but it has its own
specific characteristics such as maxHealth and
Points. Plus, it has its own functions involving
inventory management and weapon use.

Zombie Like the Character, it has its own attributes. And the
functions to drop items and attack the player. But it
has it subclasses which are the game's bosses.

JJBoss/ViceBoss Classes have their own combat AI but retaining the
same concept of the Zombie class.

ShopKeeper/ Survivor Classes are used to make the NPCs within the game
for the player to interact with. Both having certain
dialogue interaction functions. With all Shopkeepers
having a fixed dialogue, but the Survivor having a
range of dialogue choices. Both classes have
inherited attributes from the entity parent class.

Dog The dog companion has its own AI and own
attributes with the ones given by the parent class.

BackPack This class is used to house the items the player has
enquired over the game and manage them; hence it
is associated back to the Character class. It will have
its own attributes and functionality including a data
structure to allow for item storage and
management. The data structure yet to be decided.
It also has a connection to the Weapon class to allow
weapons to be in the player's inventory,
consequently, it has the attribute current item to
grant this.

Weapon The Weapon class is like the Backpack in that it has
an association with the Character class. But it has
the connection with the BackPack class to allow the
player to use weapons that are in their inventory. It
has its own attributes which grant it to have the
stats of the weapon in use and by using its
functionality it can create the projectiles needed.

Effect This Effect class is used for handling the effect status
of the Character, with its functions which are used

to manage each effect. This is left separate from the
character as it will need to interact with the UI to
allow some of these effects to be implemented and
it to display the icon of the buff/ debuff.

Location This class is used to select the current location. Its
attributes are used to confine the selected area and
decide if the area is allowed to spawn zombies. Plus,
it has the function to initialise a location. It is a
parent to the Map and Shop classes.

Map The Map class is to fully define the layout of the area
and has the association to SpawnZombie so that it
can put zombies into the game.

Shop It has a predefined layout and will use the function
to bring a shopkeeper entity into the game.

SpawnZombie SpawnZombie is to control the creation of every
zombie throughout the game using its function to
create zombie entities. And by having the zombie
counter attribute to regulate the number of zombie
entities in the game.

Menu The class created to manage what page is to be
displayed. Has associations with CharacterSelection,
TitlePage and PauseScreen.

CharacterSelection Allows the player to choose the character they wish
to play and then using its functionality to create an
entity to make the character.

TitlePage This is used to be the first thing the user interacts
with. Its functionality to start the game and allow
the continuation to the character section.

PauseScreen This class is used to pause the game and its functions
(pause/resume/quit game) this grants the player
these actions.

UI Used to manage in-game displaying
graphics/interfacing objects. Like the Main/Mini
game and points (used in both mini and regular
game). It associates with the MainGame and
MiniGame.

MainGame This manages all of the displaying attributes for the
main game through its functions. Example Health
and Ammo Counter.

RacingMiniGame Manages the Minigame aspect of the game. It has
functions related to all of its associations (Bus, Track,
Obstacle, CoinZombie).

Bus/ Track/ Obstacle/ CoinZombie Associated with the MiniGame Class. Generates and
functions to its respective class.

